Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Eur J Pharm Biopharm ; 198: 114239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452907

RESUMO

Etoposide (VP16) is commonly used in the treatment of small cell lung cancer (SCLC) in clinical practice. However, severe adverse reactions such as bone marrow suppression toxicity limit its clinical application. Although several studies on VP16 liposomes were reported, no significant improvement in bone marrow suppression toxicity has been found, and there was a lack of validation of animal models for in vivo antitumor effects. Therefore, we attempted to develop a PEGylated liposomal formulation that effectively encapsulated VP16 (VP16-LPs) and evaluated its therapeutic effect and toxicity at the cellular level and in animal models. First, we optimized the preparation process of VP16-LPs using an orthogonal experimental design and further prepared them into freeze-dried powder to improve storage stability of the product. Results showed that VP16-LPs freeze-dried powder exhibited good dispersibility and stability after redispersion. In addition, compared to marketed VP16 injection, VP16-LPs exhibited sustained drug release characteristics. At the cellular level, VP16-LPs enhanced the cellular uptake of drugs and exhibited strong cytotoxic activity. In animal models, VP16-LPs could target and aggregate in tumors and exhibit a higher anti-tumor effect than VP16-injection after intravenous injection. Most importantly, hematological analysis results showed that VP16-LPs significantly alleviated the bone marrow suppression toxicity of drug. In summary, our study confirmed that PEGylated liposomes could enhance therapeutic efficacy and reduce toxicity of VP16, which demonstrated that VP16-LPs had enormous clinical application potential.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Etoposídeo , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Lipossomos , Lipopolissacarídeos , Pós , Polietilenoglicóis/uso terapêutico
2.
Ecotoxicol Environ Saf ; 275: 116255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552388

RESUMO

Endogenous immune defenses provide an intrinsic barrier against external entity invasion. Microplastics in the environment, especially those at the nanoscale (nanoplastics or NPs), may pose latent health risks through direct exposure. While links between nanoplastics and inflammatory processes have been established, detailed insights into how they may perturb the innate immune mechanisms remain uncharted. Employing murine and macrophage (RAW264.7) cellular models subjected to polystyrene nanoplastics (PS-NPs), our investigative approach encompassed an array of techniques: Cell Counting Kit-8 assays, flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) fluorescence staining, cell transfection, cell cycle scrutiny, genetic manipulation, messenger RNA expression profiling via quantitative real-time PCR, and protein expression evaluation through western blotting. The results showed that PS-NPs caused RAW264.7 cell apoptosis, leading to cell cycle arrest, and activated the cGAS-STING pathway. This resulted in NF-κB signaling activation and increased pro-inflammatory mediator expression. Importantly, PS-NPs-induced activation of NF-κB and its downstream inflammatory cascade were markedly diminished after the silencing of the STING gene. Our findings highlight the critical role of the cGAS-STING pathway in the immunotoxic effects induced by PS-NPs. We outline a new mechanism whereby nanoplastics may trigger dysregulated innate immune and inflammatory responses via the cGAS/STING pathway.


Assuntos
Microplásticos , NF-kappa B , Animais , Camundongos , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Imunidade Inata , Nucleotidiltransferases
3.
Cell Death Dis ; 15(3): 209, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480704

RESUMO

Metabolic reprogramming, a hallmark of cancer, is closely associated with tumor development and progression. Changes in glycolysis play a crucial role in conferring radiation resistance to tumor cells. How radiation changes the glycolysis status of cancer cells is still unclear. Here we revealed the role of TAB182 in regulating glycolysis and lactate production in cellular response to ionizing radiation. Irradiation can significantly stimulate the production of TAB182 protein, and inhibiting TAB182 increases cellular radiosensitivity. Proteomic analysis indicated that TAB182 influences several vital biological processes, including multiple metabolic pathways. Knockdown of TAB182 results in decreased lactate production and increased pyruvate and ATP levels in cancer cells. Moreover, knocking down TAB182 reverses radiation-induced metabolic changes, such as radioresistant-related lactate production. TAB182 is necessary for activating LDHA transcription by affecting transcription factors SP1 and c-MYC; its knockdown attenuates the upregulation of LDHA by radiation, subsequently suppressing lactate production. Targeted suppression of TAB182 significantly enhances the sensitivity of murine xenograft tumors to radiotherapy. These findings advance our understanding of glycolytic metabolism regulation in response to ionizing radiation, which may offer significant implications for developing new strategies to overcome tumor radioresistance.


Assuntos
L-Lactato Desidrogenase , Proteômica , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Linhagem Celular Tumoral , Glicólise , Lactatos , Tolerância a Radiação/genética
4.
Cytokine Growth Factor Rev ; 75: 1-11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061920

RESUMO

In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.


Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
5.
Sci Total Environ ; 913: 169606, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159744

RESUMO

Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs.


Assuntos
Microplásticos , Nanopartículas , Animais , Camundongos , Polimetil Metacrilato , Metabolômica/métodos , Nanopartículas/toxicidade , Organoides , Politetrafluoretileno , Poliestirenos/toxicidade
6.
Exp Mol Med ; 55(12): 2596-2607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38036735

RESUMO

Exposure to nanomicroplastics (nano-MPs) can induce lung damage. The gut microbiota is a critical modulator of the gut-lung axis. However, the mechanisms underlying these interactions have not been elucidated. This study explored the role of lactate, a key metabolite of the microbiota, in the development of lung damage induced by nano-MPs (LDMP). After 28 days of exposure to nano-MPs (50-100 nm), mice mainly exhibited damage to the lungs and intestinal mucosa and dysbiosis of the gut microbiota. Lactate accumulation was observed in the lungs, intestines and serum and was strongly associated with the imbalance in lactic acid bacteria in the gut. Furthermore, no lactate accumulation was observed in germ-free mice, while the depletion of the gut microbiota using a cocktail of antibiotics produced similar results, suggesting that lactate accumulation in the lungs may have been due to changes in the gut microbiota components. Mechanistically, elevated lactate triggers activation of the HIF1a/PTBP1 pathway, exacerbating nano-MP-induced lung damage through modulation of the epithelial-mesenchymal transition (EMT). Conversely, mice with conditional knockout of Ptbp1 in the lungs (Ptbp1flfl) and PTBP1-knockout (PTBP1-KO) human bronchial epithelial (HBE) cells showed reversal of the effects of lactate through modulation of the HIF1a/PTBP1 signaling pathway. These findings indicate that lactate is a potential target for preventing and treating LDMP.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Ácido Láctico/metabolismo , Mucosa Intestinal/metabolismo , Pulmão , Camundongos Endogâmicos C57BL , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/farmacologia
7.
Environ Health ; 22(1): 78, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932789

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) may have a role in impaired health. However, the data on the association between PFASs and Systemic lupus erythematosus (SLE) have been limited. We designed a population-based case-control study in China and evaluated the association. 100 normal persons (Control) and 100 SLE patients (Case) were obtained from 113 controls and 125 cases according to matching conditions. Serum samples were collected by venipuncture for UHPLC-MRM-MS Analysis to obtain the concentration of five PFASs in participants. Demographic characterization description was performed for the two groups of participants, the PFASs concentration distribution of the two groups was described and compared, then divided into three tiers (< 50th, 50th ~ 75th, > 75th) for subsequent analysis. Conditional logistic regression models were utilized to calculate the odds ratios (ORs) and 95% CIs for SLE. Relationship between changes in the concentration of PFASs and the risk of SLE assessed by restricted cubic spline. As the highest serum levels of the five PFASs tested in this study population, the highest perfluoroundecanoic acid (PFUnA) quartile had a 2.78-fold (95%CI: 1.270, 6.10) compared with the lowest quartile of PFUnA exposure, other types of PFASs also showed high association with SLE as well as PFASs mixture. Additionally, the exposure of PFASs exist a dose-response relationship (ptrend < 0.05). This risk association remained be found after adjusting the covariates in model 1 (adjustment of BMI) and in model 2(adjustment of BMI, smoking, drinking, hypertension and leukocyte). The restricted cubic spline illustrated a gradual increase in the possible risk of SLE with the increasing exposure of PFASs components levels. Our study firstly revealed that PFASs are risk factors for SLE and PFASs exposures are associated with SLE risk in a dose - response manner. Evidence from larger and more adequately powered cohort studies is needed to confirm our results.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Lúpus Eritematoso Sistêmico , Humanos , Estudos de Casos e Controles , China/epidemiologia
8.
Environ Res ; 238(Pt 2): 117188, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775007

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are widespread persistent organic pollutants (POPs) associated with diseases including osteoporosis, altered immune function and cancer. However, few studies have investigated the association between PFAS mixture exposure and Depression in general populations. METHODS: Nationally representative data from the National Health and Nutrition Examination Survey (NHANES) (2005-2018) were used to analyze the association between PFAS and Depression in U.S. adults. Total 12,239 adults aged 20 years or older who had serum PFAS measured and answered Patient Health Questionnaire-9 (PHQ-9) were enrolled in this study. PFAS monomers detected in all 7 investigation cycles were included in the study. Generalized additive model (GAM) was used to fit smooth curves and threshold effect analysis was carried out to find the turning point of smooth curves. Generalized linear model (GLM) was used to describe the non-linear relationship between PFAS and depression and unconditioned logistic regression was used to risk analysis. RESULTS: The median of total serum PFAS concentration was 14.54 ng/mL. The curve fitting results indicated a U-shaped relationship between total serum PFAS and depression: PFAS< 39.66 ng/mL, A negative correlation between PHQ-9 score and serum PFAS concentration was observed (ß 0.047,95%CI -0.059, -0.036). The depression PHQ-9 score decreased with the increase of serum PFAS concentration. PFAS ≥ 39.66 ng/mL, A positive correlation was observed between PFAS and PHQ-9 score (ß 0.010,95% CI 0.003, 0.017). The depression PHQ-9 score increased with the increase of serum PFAS concentration. CONCLUSIONS: Our study provides new clues to the association of PFAS with depression, and large population-based cohort studies that can validate the causal association as well as toxicological mechanism studies are needed for validation.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Humanos , Adulto , Estudos Transversais , Inquéritos Nutricionais , Depressão
9.
Chemosphere ; 342: 140108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714480

RESUMO

Nanoplastics have been widely studied as environmental pollutants, which can accumulate in the human body through the food chain or direct contact. Research has shown that nanoplastics can affect the immune system and mitochondrial function, but the underlying mechanisms are unclear. Lungs and macrophages have important immune and metabolic functions. This study explored the effects of 100 nm PS-NPs on innate immunity, mitochondrial function, and cellular metabolism-related pathways in lung (BEAS-2B) cells and macrophages (RAW264.7). The results had shown that PS-NPs exposure caused a decrease in mitochondrial membrane potential, intracellular ROS accumulation, and Ca2+ overload, and activated the cGAS-STING signaling pathway related to innate immunity. These changes had been observed at concentrations of PS-NPs as low as 60 µg/mL, which might have been comparable to environmental levels. Non-target metabolomics and Western Blotting results confirmed that PS-NPs regulated prostaglandin B1 and other metabolites to cause cell damage through the cGAS-STING pathway. Supplementation of prostaglandin B1 alleviated the immune activation and metabolic disturbance caused by PS-NPs exposure. This study identified PS-NPs-induced innate immune activation, mitochondrial dysfunction, and metabolic toxicity pathways, providing new insights into the potential for adverse outcomes of NPs in human life.

10.
J Adv Res ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37541584

RESUMO

BACKGROUND: p53 wild-type lung cancer cells can develop radiation resistance. Circular RNA (circRNA) consists of a family of transcripts with exclusive structures. circRNA is critical in tumorigenesis and is a potential biomarker or therapeutic target. It is uncertain how circRNA expression and functions are regulated post-radiation in p53 wild-type cancer cells. METHODS: A549 or H1299 cells were divided into p53-wt and p53-KO groups by CRISPR/Cas9; both groups were subjected to 4 Gy ionizing radiation (IR: p53-wt-IR and p53-KO-IR). RNA-seq, CCK8, cell cycle, and other functional and mechanism experiments were performed in vivo. p53 gene knockout mice were generated to test the cell results in vitro. RESULTS: circRNAs were found in differential groups. circRNA_0006420 (IRSense) was upregulated in p53-wt cells but had the same expression level as p53-KO cells after radiation, indicating that p53 silencing prevents its upregulation after IR. In the presence of p53, upregulated IRSense post-radiation induces G2/M arrest by regulating DNA damage repair (DDR) pathway-related proteins. Meanwhile, upregulated IRSense post-radiation aggravates the radiation-induced epithelial-mesenchymal transition (EMT). Interestingly, in the presence of p53, it promotes IRSense/HUR/PTBP1 complex formation resulting in the promotion of the radiation-induced EMT. Moreover, c-Jun regulates the upregulation of p53 transcription after radiation treatment. For these lung cancer cells with p53, upregulated IRSense aggravates lung cancer cell proliferation and increases radiation resistance by interacting with HUR (ElAV-like protein 1) and PTBP1 (polypyrimidine tract-binding protein 1) in the nucleus. CONCLUSIONS: Lung cancer cells retaining p53 may upregulate circRNA_0006420 (IRSense) expression post radiation to form an IRSense/HUR/PTBP1 complex leading to radiotherapy resistance. This study furthers our understanding of the roles of circRNA in regulating the effect of radiotherapy and provides novel therapeutic avenues for effective clinical lung cancer therapies.

11.
MedComm (2020) ; 4(4): e327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457660

RESUMO

Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.

12.
Int J Ophthalmol ; 16(7): 1123-1129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465520

RESUMO

AIM: To elucidate the safety and visual quality of implantable collamer lens with central hole (ICL V4c) implantation for correcting moderate and high myopia for at least 5y. METHODS: This retrospective study was conducted on 58 patients (114 eyes) who were followed up for at least 5y after ICL V4c implantation. The observation was done before and on 1d, 1mo, 1 and 5y or more after the surgical procedure. The visual acuity, subjective refraction, intraocular pressure, vault, axial length, central hole position, pupil diameter, visual quality, and adverse events were analyzed. The visual quality includes aberration, the modulation transfer function cutoff frequency (MTF cutoff), objective scattering index (OSI), Stroller's ratio (SR), and visual quality questionnaire. RESULTS: The average follow-up period was 69.25±3.80mo (range 60-82mo) and the preoperative spherical equivalent (SE) was -8.66±1.97 D. At 5y after operation, the safety index was 1.01±0.02 and the efficacy index was 0.99±0.42 and SE was -0.65±0.63 D. The 59.6% of the eyes achieved an uncorrected distance visual acuity of 20/20, 76.3% of the eyes had SE within ±1.0 D at the last visit. The axial length increased by 0.29±0.71 mm 5y after the surgery (t=-3.843, P<0.001). The mean vault at the last follow-up was 510.59±245.61 µm. The central hole was on the temporal side in 80 eyes (84.2%). The visual quality questionnaire showed that 98.2% patients were satisfied with the surgical procedure. Adverse events occurred in 4 eyes (3.5%), including the posttraumatic toric ICL rotation (2 eyes), iris incarceration (1 eye), and posttraumatic ICL displacement (1 eye) at the last follow-up. CONCLUSION: Long-term ICL V4c implantation is safe, effective, and stable for correcting moderate and to high myopia, and the visual quality with patients is excellent and satisfactory, but the progression of axial length still needs attention after surgery.

13.
Mol Ther ; 31(9): 2633-2650, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37482682

RESUMO

Chromatin remodeling and N6-methyladenosine (m6A) modification are two critical layers in controlling gene expression and DNA damage signaling in most eukaryotic bioprocesses. Here, we report that poly(ADP-ribose) polymerase 1 (PARP1) controls the chromatin accessibility of METTL3 to regulate its transcription and subsequent m6A methylation of poly(A)+ RNA in response to DNA damage induced by radiation. The transcription factors nuclear factor I-C (NFIC) and TATA binding protein (TBP) are dependent on PARP1 to access the METTL3 promoter to activate METTL3 transcription. Upon irradiation or PARP1 inhibitor treatment, PARP1 disassociated from METTL3 promoter chromatin, which resulted in attenuated accessibility of NFIC and TBP and, consequently, suppressed METTL3 expression and RNA m6A methylation. Lysophosphatidic Acid Receptor 5 (LPAR5) mRNA was identified as a target of METTL3, and m6A methylation was located at A1881. The level of m6A methylation of LPAR5 significantly decreased, along with METTL3 depression, in cells after irradiation or PARP1 inhibition. Mutation of the LPAR5 A1881 locus in its 3' UTR results in loss of m6A methylation and, consequently, decreased stability of LPAR5 mRNA. METTL3-targeted small-molecule inhibitors depress murine xenograft tumor growth and exhibit a synergistic effect with radiotherapy in vivo. These findings advance our comprehensive understanding of PARP-related biological roles, which may have implications for developing valuable therapeutic strategies for PARP1 inhibitors in oncology.


Assuntos
Cromatina , Neoplasias , Humanos , Camundongos , Animais , Cromatina/genética , Metilação , RNA/metabolismo , Fatores de Transcrição/genética , RNA Mensageiro/genética , Neoplasias/genética , Neoplasias/radioterapia , Metiltransferases/genética , Metiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
14.
MedComm (2020) ; 4(3): e258, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37168687

RESUMO

Ionizing radiation (IR) has been extensively used for cancer therapy, but the radioresistance hinders and undermines the radiotherapy efficacy in clinics greatly. Here, we reported that the spliceosomal protein thioredoxin-like 4B (TXNL4B) is highly expressed in lung tissues from lung cancer patients with radiotherapy. Lung cancer cells with TXNL4B knockdown illustrate increased sensitivity to IR. Mechanistically, TXNL4B interacts with RNA processing factor 3 (PRP3) and co-localizes in the nucleus post-IR. Nuclear localization of PRP3 promotes the alternative splicing of the Fanconi anemia group I protein (FANCI) transcript variants, FANCI-12 and FANCI-13. PRP3 regulates alternative splicing of FANCI toward the two variants, FANCI-12 and FANCI-13. Radioresistance was greatly enhanced through the combination of PRP31 and PRP8, the critical components of core spliceosome promoted by PRP3. Notably, the inhibition of PRP3 to suppress the production of FANCI-12 would deprive PRP31 and PRP8 of such interaction. As a result, cell cycle G2/M arrest was induced, DNA damage repair was delayed, and radiosensitivity was improved. Collectively, our study highlights potential novel underlying mechanisms of the involvement of TXNL4B and alternative splicing in radioresistance. The results would benefit potential cancer radiotherapy.

15.
J Neuroinflammation ; 20(1): 42, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36804009

RESUMO

INTRODUCTION: The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES: To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS: Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS: Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS: Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.


Assuntos
Maneb , Paraquat , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Inflamassomos/metabolismo , Integrinas/metabolismo , Macrófagos/metabolismo , Maneb/toxicidade , Transtornos da Memória/metabolismo , Microglia/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Paraquat/toxicidade , Doença de Parkinson/patologia , Antígeno de Macrófago 1
16.
Int J Pharm ; 635: 122708, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36764415

RESUMO

Nedaplatin (NDP) plays an important role in the chemotherapies of non-small cell lung cancer (NSCLC). However, dose-limiting toxicities such as myelosuppression and drug resistance restrict its clinical application. Herein, we intended to overcome these defects by developing a PEGylated liposomal formulation encapsulated NDP (NDP-LPs). For the first time, we found the incompatibility between NDP and natural phospholipids such as egg phosphatidylcholine (EPC) using the high-performance liquid chromatography (HPLC) method. The orthogonal experimental design was applied to optimize the conditions for preparing NDP-LPs, with encapsulation efficiency (EE) as the evaluation indicator. The physicochemical properties of optimized NDP-LPs were further characterized, including particle size, zeta potential, EE, drug release profiles, and so on. Results showed that a significantly sustained-release profile of NDP-LPs was observed and the releasing time of NDP could reach as long as 8 days. At the cellular level, NDP encapsulated in the PEGylated liposomes enhanced its cellular uptake and possessed potent cytotoxic activity. After intravenous injection, NDP-LPs could accumulate at tumor sites and effectivelyinhibit tumor growth of mice without obvious adverse effects. In conclusion, our results demonstrated that PEGylated liposomes could serve as a promising carrier to enhance the therapeutic effects of NDP.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Preparações de Ação Retardada/uso terapêutico , Lipopolissacarídeos , Polietilenoglicóis/química , Tamanho da Partícula
17.
Adv Biol (Weinh) ; 7(10): e2200256, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36617509

RESUMO

This study aims to investigate the molecular mechanism of Artemisia argyi (AA) in the treatment of cognitive impairment of Alzheimer's disease (AD) and the docking activity of AA on potential therapeutic targets using network pharmacology and molecular docking techniques. Bioinformatic analysis showed that neuroactive ligand-receptor interaction, the pathway of cancer, calcium signaling, neurodegeneration-multiple disease, and chemical carcinogenesis-receptor activation might be the related signal pathway in AA-AD. Moreover, the binding energy of AA active compounds to potential targets are ≦-4.16 kJ mol-1 with 10 patterns ≦-10 kJ mol-1 . The results of molecular docking showed that there would be a stable binding ability between the active components of AA and potential target genes. Among them, 24-methylenecyloartanone, beta-sitosterol, and Stigmasterol are active components with potential oral bioavailability (OB), drug-likeness (DL), and blood-brain-barrier(BBB) are screened out with the stable binding ability to target genes, which may be potential components of AA treatment for AD. This study laid an important foundation for further study of the molecular mechanism of AA treatment for AD.

18.
Biol Direct ; 18(1): 2, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635762

RESUMO

Radiation-induced pulmonary fibrosis (RIPF) is a major side effect experienced for patients with thoracic cancers after radiotherapy. RIPF is poor prognosis and limited therapeutic options available in clinic. Lactobacillus rhamnosus GG (LGG) is advantaged and widely used for health promotion. However. Whether LGG is applicable for prevention of RIPF and relative underlying mechanism is poorly understood. Here, we reported a unique comprehensive analysis of the impact of LGG and its' derived lncRNA SNHG17 on radiation-induced epithelial-mesenchymal transition (EMT) in vitro and RIPF in vivo. As revealed by high-throughput sequencing, SNHG17 expression was decreased by LGG treatment in A549 cells post radiation and markedly attenuated the radiation-induced EMT progression (p < 0.01). SNHG17 overexpression correlated with poor overall survival in patients with lung cancer. Mechanistically, SNHG17 can stabilize PTBP1 expression through binding to its 3'UTR, whereas the activated PTBP1 can bind with the NICD part of Notch1 to upregulate Notch1 expression and aggravated EMT and lung fibrosis post radiation. However, SNHG17 knockdown inhibited PTBP1 and Notch1 expression and produced the opposite results. Notably, A549 cells treated with LGG also promoted cell apoptosis and increased cell G2/M arrest post radiation. Mice of RIPF treated with LGG decreased SNHG17 expression and attenuated lung fibrosis. Altogether, these data reveal that modulation of radiation-induced EMT and lung fibrosis by treatment with LGG associates with a decrease in SNHG17 expression and the inhibition of SNHG17/PTBP1/Nothch1 axis. Collectively, our results indicate that LGG exerts protective effects in RIPF and SNHG17 holds a potential marker of RIPF recovery in patients with thoracic cancers.


Assuntos
Lacticaseibacillus rhamnosus , Fibrose Pulmonar , RNA Longo não Codificante , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Fibrose Pulmonar/genética , Fibrose Pulmonar/tratamento farmacológico , Células A549 , Humanos , RNA Longo não Codificante/genética
19.
Environ Sci Process Impacts ; 25(1): 26-36, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36337004

RESUMO

Due to their large-scale manufacture and widespread application, global concern regarding microplastics (MPs) has been increasing rapidly over the past decade, in particular their potential genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to accumulation of reactive oxygen species (ROS), DNA damage, cell death, inflammation or genetic regulation which in turn can have consequences for health, such as the induction of carcinogenesis. In this review, we presented a comprehensive landscape of the effects of MPs on genotoxicity including the molecular mechanisms. Followed by the MP research trend analysis from a global viewpoint including the comparative research between China and USA and point out that scientists should continue to substantially contribute to the field of MPs through more extensive academic investigation, global cooperation, and the development of novel control methods. Challenges are also discussed. Overall, this review provides insights into the genotoxic effects of MPs on human health and related research trends in this field.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos , População do Leste Asiático , China , Monitoramento Ambiental , Poluentes Químicos da Água/análise
20.
Ecotoxicol Environ Saf ; 249: 114351, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508818

RESUMO

Environmental and occupational low-dose radiation (LDR) exposure may be harmful for health but the previous reports regarding effect of LDR on cognition are contradictory. Here we investigated the effect of long-term LDR exposure on cognition. In this study, male Balb/c mice' cognitive functions were tested at 15 weeks after being exposed to 0.5 Gy LDR in 10 fractions at each dose of 0.05 Gy. The results demonstrated that long-term LDR exposure increases escape latency and the time spent in finding exits in mice compared with non LDR exposure. Meanwhile, the inflammation-related proteins including NFκB and p38 also increased. Lipopolysaccharide (LPS) increased and short-chain fatty acid (SCFA) levels decreased following long term LDR exposure. Treatment with microbiota-derived LPS and SCFAs reversed these effects in mice. Furthermore, the gut barrier integrity was damaged in a time-dependent manner with the decreased expression of intestinal epithelial-related biomarkers such as ZO-1 and occludin. Mechanistically, long after exposure to LDR, increased LPS levels may cause cognitive impairment through the regulation of Akt/mTOR signaling in the mouse hippocampus. These findings provide new insight into the clinical applications of LDR and suggest that the gut microbiota-plasma LPS and SCFAs-brain axis may underlie long-term LDR-induced cognition effects.


Assuntos
Eixo Encéfalo-Intestino , Disfunção Cognitiva , Microbioma Gastrointestinal , Exposição à Radiação , Lesões por Radiação , Animais , Masculino , Camundongos , Eixo Encéfalo-Intestino/efeitos da radiação , Disfunção Cognitiva/etiologia , Microbioma Gastrointestinal/efeitos da radiação , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/efeitos da radiação , Camundongos Endogâmicos C57BL , Relação Dose-Resposta à Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...